
For example, by assuming that 

1oo 
Stab [A, B]---- max [ ] / ~ - ~ ,  ~ ~ }  

and making use of the fact that • e i, i + lIKil 2 e i, we shall always have Stab [A, B] 
i00 characterizing the "degree of stabilizability" as if it were as a percentage. Other pr o-, 
posals are also possible for the form of the equation expressing Stab [A, B] in terms of 
• and iIKll. 

The necessity of introducing numerical characteristics for the degree of stabilizability, 
controllability, detectability, and observabiiity became clear in the process of analyzing 
the set of equations by means of numerical methods of linear algebra giving a result with 
a guaranteed estimate of accuracy. A review of problems arising in developing these meth- 
ods has been given in [6]. 

The author thanks A. Ya. Bulgarkov and V. M. Gordienko for discussions during which 
the reasoning given in the present work arose. 
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ASYMPTOTICS OF A VELOCITY FIELD AT CONSIDERABLE DISTANCES 

FROM A SELF-PROPELLED BODY 

V. V. Pukhnachev UDC 532.516 

Stationary flow is considered for a viscous incompressible liquid outside a finite body 
in a three-dimensional space. Velocity distribution is prescribed at the surface of the 
body for a liquid with zero overall flow rate over this surface. At infinity the velocity 
vector tends toward a zero constant vector. External mass forces may act on the liquid de- 
creasing quite rapidly with distance from the body~ It is required that the total pulse 
applied to the liquid by the boundary of the body and by mass forces equals zero. The con- 
ditions listed form a boundary problem for Navier-Stokes equations which we call the problem 
of pulse-free flow or the problem of flow around a self-propelled body. Asymptotics are 
constructed for the solution of this problem at considerable distances from the body assuming 
that this solution exists. These asymptotics have marked differences from those for solving 
the classical problem of flow around a towed body [i-3]. 

i. Statement of the Problem. We formulate the problem of pulse-free flow around a 
body by a viscous liquid. Let ~ be a smooth closed surface in R 3, and ~ be the external sur- 
face in relation to the E region. We consider in this region a stationary set of Navier- 
Stokes equations and the continuity 
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h u - - 2 O u / O x i  -- VP = 2u 'vu -- g(x), V . u = O ,  (1 .1)  

Equation (i.i) is written in dimensionless variables; as scales of length, velocity, and 
pressure values of 2v/V~, V~, and pV~2/2 are selected respectively. Here V= = const > 0 
is flow velocity modulus at infinity; p is liquid density; ~ is kinematic viscosity coeffi- 
cient; u is deviation of the dimensionless liquid velocity from the flow velocity el = (i, O, 
0); g is density of external mass forces. Function g is assumed to be smooth in region 
and finite (considered in Sec. 5 is the case of funcs g with an uncompact carrier, but 
with a condition of its rapid decrease with r = [• § =). 

In system (i.i) the boundary conditions are linked: 

ulz = w(x); (1 .2)  

u -+O for r -~co ,  (1 .3)  

where w + e 1 i s  the  p r e s c r i b e d  v e l o c i t y  d i s t r i b u t i o n  a t  the  boundary of  the  body. Furthermore,  
we s h a l l  assume t h a t  the  o v e r a l l  flow r a t e  of l i q u i d  over the  boundary of  the  body equals  
zero: 

~ w . n d ~ = O  (1.4) 

(h is the unit vector of the normal to the boundary region ~). If surface Z does not move and 
is impenetrable, then w =--e I. If also g = 0, then relationships (1.1)-(1.3) form a clas- 
sical problem of flow for Navier-Stokes equations. A considerable number of works of an 
analytical nature have been devoted to studying this problem (see [1-3] and the literature 
cited there), and there are also numerous studies in which it is resolved numerically. It 
is well known that in this case the resistance force operating on the body from the direction 
of the liquid differs from zero. Thus, in order to realize a stationary regime for flow 
around a body, it is necessary to restrain external forces in the stream. Therefore, the 
problem of flow should be called a problem of flow around a towed body. 

We are interested in the problem of flow around a self-propelled body. The condition 
of self-propulsion means that the total impulse applied to the liquid by the boundary of 
the body around which there is flow and mass forces equal zero. Mathematically this condi- 
tion is expressed by the equation 

--F----- ~ [Pu .n- -  2u(u + e~).n] dE + ~gdx = O. (1 .5)  
2 

Here Pu is the stress tensor corresponding to the velocity field u and pressure p; elements of 
this tensor have the form (Pu)i j = -P6ij + 3ui/exj + 8uj/exi (i, j = i, 2, 3). The problem 
(1.1)-(1.5) is called the problem of pulse-free flow of the problem of flow around a self- 
propelled body. 

It is well' known that with prescribed functions w and g satisfying some regularity con- 
dition, problem (1.1)-(1.4) has at least one solution [i, 3]. [For example, for this it is 
sufficient that w �9 C2+~(E), Ixlg�9 L2(~); Z is the Lyapunov surface with an index ~�9 (0, i).] 
With quite small (in suitable mathematical values) functions w and g the solution of problem 
(1.1)-(1.4) is unique [i, 2]. Whence it follows that the problem of flow around a self-pro- 
pelled body (1.1)-(1.5) is solvable generally speaking only with fulfillment of additional 
conditions for functions w and g. Formulation of these conditions [in other words, a study 
of the question of the resolvability of problem (1.1)-(1.5)] is a very difficult proble m . 
Currently the question of existence of a solution for the problem of pulse-free flow has 
only been solved positively in a Stokes approximation [4] (in [4] there is also a review 
of previous results for studying the problem of flow around a self-propelled body). In [5] 
an approximate solution is constructed for one of the variants of axisyff~etrical problem 
(1.1)-(1.5) with small Reynolds numbers in the case when Z is a sphere. 

The aim of this work is construction of an asymptotic solution for (1.1)-(1.5) with 
r = Ix[ ~ ~ assuming that it exists. Some previous results of studying this problem in the 
case of flow around a body with an immobile impenetrable boundary (which corresponds to w = 
--el) are given in [6]. An estimate of the decrease in curl velocity with r + ~ (without 
separating the main term of the asymptotics) for solution of problem (i.i)-(1.5) with g = 0 
was obtained in [7]. 
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2. Integral Presentation of the Solution. First we formulate smoothness conditions 
in relation to starting data for problem (l.l)-(l.4)which subsequently will be assumed to 
be fulfilled everywhere. Let Z e C 2+~, we C2+~(E),g e Ca(~), where 0 < ~ < 1 (function g 
is assumed to have a compact carrier). With these assumptions the theorem is correct for 
existence of a classical solution of problem (1.1)-(1.4) in a class of vector-functions u, hav- 
ing a finite Dirichlet integral [3]: 

S V u : v u d x < o o .  (2.1) 

It was established in [2] that any solution of this problem satisfying inequality (2.1) 
accepts the estimate 

[U(X)] ~ Cr -1/2-e for r - +  ~ ( 2 . 2 )  

with positive constants e and C. It was shown in [i] that in order to solve problem (i.I)- 
(1.4) obeying condition (2.2) an integral presentation is valid 

u (x) = - ~ [2u (v)" u (y). v E  (= - v) + g (y)- E (x - -  V)I d v  + 

a (2.3) 
+ S {u (y). P E  (x - -  y) - -  E (x - -  y) .  P u  (V) + 

X 

+ 2 [ E ( x  - -  y) 'u  (V)] [u(v) + el]}.n dXy. 

Here E(x) is the fundamental tensor of the Oseen system corresponding to (i.I)o 
Eij (i, j = i, 2, 3) are governed by the equations 

Its elements 

Eij=6ijAv-- 0~e t i t - - e - t  
"Ox~Ozj ' v =  --g--~ t - d t ,  s = r - - x l .  ( 2 . 4 )  

0 

Symbol PE(x) signifies a tensor of the third rank with elements 

aEih OEjh t 0 ( 1 ) ( 2 . 5 )  
(PE)ijh = -- PhS~ + ~x~ + ax----(' Pk  -- 4~ Ox h _ ': 

i,: ], k = i ,  2 , 3 .  

For e l e m e n t s  of  t e n s o r  E and t h e i r  f i r s t  d e r i v a t i v e s  w i t h  l a r g e  v a l u e s  o f  r = txl t h e r e  
a r e  e s t i m a t e s  [1,  2] 

I i - - e  - s .  ( 2 . 6 )  IE~jI<~  c ~ ~ , 

I v E ~ j I ~ < c ( ; ~ 2  ' - e - ' - s e - ~  , ~  o - ' )  
s 3/2 + r ~ ~ " ( 2 . 7 )  

Here and below, C (with or without indices) are different positive constants. In addition, 
an estimate is required of the second derivatives of function Eij. By quite cumbersome cal- 
culations these estimates are obtained from presentation (2.4) in the form 

< c  r~ . ~ T ~ - -  ~ + r~/~ 8(~+~'/V -c*(~) '  (2.8) 

if r § ~ (i, j, k, s = I, 2, 3). 

By proceeding from presentation (2.3) it was shown in [I] that any solution of problem 
(1.1)-(1.4) satisfying equality (2.2) permits separation of the main term of the asymptotics 
with large values of r: 

u(=) = F.  E(=) + ~(=), ( 2 . 9 )  

where F is a constant vector determined by Eq. (1.5), and ~(x) is a residual term for which 
an estimate is obtained 

I~l ~ Cr-3/2+~( s + i) -l+e ( 2 . 1 0 )  

217 



(E > 0 is arbitrarily small). From (2.9) and (2.10) it emerges that there is a paraboloidal 
region of the trail in direction e I, within which u = O(r-1). Outside any circular cone with 
an axis directed along el, u = O(r'2). (An estimate of the value of I~[ outside the trail 
may be refined, but it is not required by us.) 

Assuming colinearity of vectors F and e13$n/2 [8], the following terms of the asymptotics 
were obtained for field u, having the order r- (this assumption is fulfilled in the case 
of axisymmetrical flow). In [7, 8] a study of the behavior of the velocity curl at large 
distances from the body around which there was flow, also showed that outside the trail the 
curl decreases by an exponential rule. In both [7] and in [8] it is assumed that g = 0, and 
in [8] it is additionally assumed that w ~--el, which relates to the classical flow problem. 
For this case in [9] "double" asymptotics were plotted for the velocity field when r § 
and Reynolds number tends toward zero. 

Equation (2.9) means that at considerable distances from a towed body perturbation of 
the velocity field will be (with an accuracy to small high orders) the same as for an Oseen 
stream "flowing around" a concentrated force F. The consequence of this situation is the 
fact that information about the shape of a towed body is rapidly forgotten with distance 
from it. It is shown below that the asymptotics for the velocity field in the problem of 
pulse-free flow are governed by the markedly greater number of functionals characterizing 
both the shape of the body and the method of realizing the self-propulsion regime. 

3. Main Result. Here and below it is assumed that the solution of problem (1.1)-(1.4) 
satisfies the additional condition of self-propulsion (1.5). In addition, it is assumed 
that condition (2.1) is fulfilled, which, in view of what has been said above makes it pos- 
sible to present u(x) in the form of (2.3). We break down function into the sum of three 
terms: u=I +J iN, where 

N (x) = - -  2 ~ u (y).  u ( y ) . v  E (x - -  y) dg, 
[t 

s (x) = - .[ g (y). E y) + { -  E (x - -  y) I",1 (y) + 

@ 2 [ E ( x  - -  y).u (g)] [u(y) + el]}.ndE ~ 

and I is the surface integral from u(y)'PE(x - y)" n. On the basis of (2.5) it is possible 
to write it as 

x t --  y). n} dEu. I ( x ) = ~ ( [ u ( y ) - n ] v 4 n l  - -y l  + u ( y ) ' 2 D E ( x  
E 

Here DE(x) is a tensor of the third rank with elements 

i (OEih OEjh~ 
( D E ) i j k = T \ - ~ j  + oz i } '  i, ], k = t ,  2, 3 

i 

(summing in  t h e  second  te rm o f  t h e  p r e e x p o n e n t i a l  e x p r e s s i o n  i s  c a r r i e d  ou t  f o r  i n d i c e s  i 
and j ) .  We s h a l l  s u c c e s s i v e l y  e s t i m a t e  i n t e g r a l s  I, J ,  and N. 

In  o r d e r  t o  e s t i m a t e  I ( x )  we n o t e  t h a t  due t o  c o n d i t i o n  ( 1 . 4 )  t h e  main t e rm o f  t h e  a s ~ p  
totics of the integral of the first term with r + ~ equals zero. The second term for these 
as~ptotics has the power r -3 with r § = and it should be considered together with the main 
term of the as~ptotics of the integral containing DE(x - y) since the last integral outside 
the region of the trail also has the power O(r-~). Considering the limitedness of surface 
Z and by using a Taylor equation, we obtain 

l ( x ) = R : D E ( x ) + q ,  v V ~  +%1(x), ( 3 . 1 )  

where  R i s  a c o n s t a n t  t e n s o r  o f  t h e  second  rank ;  q i s  a c o n s t a n t  v e c t o r ;  21 i s  a r e s i d u a l  
t e rm.  V e c t o r  q and e l e m e n t s  R i j  o f  t e n s o r  R in  v iew o f  ( 1 . 2 )  a r e  c a l c u l a t e d  e x p l i c i t l y :  

~(w-n) ydE ,  R i j = 2 ~ w i n j d Z ,  i, ] =  t,  2, t 3. q = - -  ~-ff- 
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The expression R:DE means convolution with respect to indices i and j. Residue % permits 
the estimate 

IXgx) l < cr fo=~ r -+ oo ( 3 . 2 )  

[ ~ ( x )  i s  a f u n c t i o n  s t a n d i n g  in  t h e  r i g h t - h a n d  p a r t  o f  i n e q u a l i t y  ( 2 . 8 ) ] .  I t  i s  n o t e d  t h a t  
in the zone of the trail it is determined by the inequality s ~ r - x~ ~ C, ~ = O(r-2); 
outside any cone with axis el, ~ = O(r -4) when r + =. 

By considering the integral $(x) we can be sure that the main of its asymptotics with 
large r according to equality (1.5) vanishes to zero. In order to separate the following 
terms and estimate the residue again we use a Taylor equation and inequality (2.8), and we 
also consider the finiteness of function g. As a result of this we arrive at the relation- 
ship 

3(~  = (Q~ + Q2) : vE(x)  A- X2(x). ( 3 . 3 )  

Here QI and Q2 are constant tensors of the second rank; 7E(x) is a tensor of the third rank 
with elements (7E)ij k = 8Ejk/3X i (i, j, k = i, 2, 3); %2 is a residual term permitting in 
the same way as %1, estimate (3.2). Summing in convolution Qs : VE(x) (s = is 2) is carried 
with respect to indices i and j. Elements of tensor Ql may be calculated a priori: 

Z l ~ l  

In contrast to this the elements of tensor Q2 are functionals from the solution of problem 
(i.i)-(1.5). They are calculated by the equation 

(Q=)ij= Y ~  - P ~ J ~ + ~ x  z + 0 x ~ / n / l z .  
Z I=I 

The estimate for integral N(x) is based on the results of work in [8]. For this it 
is noted that, in view of (1.5) and (2.9), u = ~, which entails equality (2.10) for function 
lu(x)I. The presence of estimates (2.7) and (2.10) makes it possible to use Theorem 2 from 
[8] in order to calculate the main part of the integral with respect to region ~ from expres- 
sions ui(Y)uj(y)SEik(X Lyj/~yj (i, j, k = i, 2, 3) and to estimate the residual term. As 
a result of this with r 

N(x) = Q~ : v E  + ~(x), 

where Q3 is a constant tensor of the second rank, and function l~I 

I~(x)l ~< Cr-~+~(s § l) -~/~, 

in  which  t h e  number s > 0 may be t a k e n  as  s m a l l  as  i s  c o n v e n i e n t .  

( 3 . 4 )  

satisfies the equality 

(3.5) 

It is noted that stand- 
ing in the right-hand side of (3.5) the function decreases more slowly than ~(x) with dis- 
tance to infinity for any direction. Therefore, residual terms in Eqs. (3.1) and (3.3) will 
be subordinate compared with ~(~. 

By combining equalities (3.1), (3.3), and (3.4), we arrive at the presentation sought 
for function u with large values of Ixl = r: 

u(x) = R : DE(x) -~ Q : vE(x)  + ~(x). ( 3 . 6 )  

Here  Q = Q1 + Q2 + Q3, ~ = ~ - ~ Z I + ~ .  From ( 3 . 2 )  and ( 3 . 5 )  and t h e  r e m a r k s  made a b o v e ,  
it follows that 

I~(x)l ~< Cor-Z"s(s + t)  -1/2 for r - +  ~ .  ( 3 . 7 )  

I t  i s  n o t e d  t h a t  in  Eq. ( 3 . 6 )  t h e r e  i s  no t e r m  q . V ( Y l x [ - 1 )  as  an e x t r a o r d i n a l  t e r m l  in  t h e  
zone of the trail it is subordinate to the first two terms of the right-hand part of (3.6)~ 
and outside this zone it is subordinate to the last term. 

We formulate the main result of the present work. Let u , p be the solution of problem (i.i)- 
(1.4) from class (2.1) satisfying additional condition (1.5). Then with r + = the asymptotic 
presentation u(x) in the form (3.6) is valid in which R and Q are constant tensors of the 
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second rank. Elements of tensor R are expressed explicity in terms of the prescribed function~ 
w(x). Function ~(x) permits estimate (3.7) in which e and Co are positive constants; e is 
arbitrarily small, and s = r - x I. 

In view of the presentation of (3.6), a series of unsolved questions arises. We have 
not yet set out explicit expressions in terms of function u for elements of tensor Q3 figur- 
ing in (3.4) and entering into the sum comprising Q. It will be natural to assume that 

(Qa)~j=--2.[u~(y)uj(g)dg, i, ] = 1 ,  2, 3. 

(In the following section it is established that these integrals converge.) Furthermore, 
from (2.7) and (3.7) it emerges that outside any cone with axis e I the first two terms in 
the right-hand part of (3.6) decrease more rapidly than the last. [There is a basis for 
assuming that in this region the index of -2 + g of the power of r in inequality (3.7) may 
be substituted by -5/2, although proof of this assumption requires very detailed study of 
the integral N(x).] However, in the region of the trail s ~ C the function ~(x) which is 
most interesting from a physical viewpoint is the valid value of the residual term in Eq. 
(3.6). 

By comparing asymptotic presentations (2.9) with F~0 and (3.6) we see that in the 
paraboloidal region of the trail u = O(r -l) in the first case and u = O(r -3/2) in the se- 
cond. Outside any cone with el,u = O(r -2) for a towed body (F~ 0) and u = O(r -s/2+e) for 
a self-propelled body. Thus, there is a more rapid decrease in velocity perturbation at 
a considerable distance from a self-propelled body. In addition, the asymptotic behavior 
of velocity with pulse-free flow around a body is characterized by much greater variety than 
in the classical case. It is recalled that in the problem of flow around a towed body with 
an immobile impenetrable boundary in the absence of external mass forces the main term of 
the asymptotics is determined by the single vector F (and for an axisymmetrical flow regime 
by the single scalar vector Fz). As shown in [i], this vector is proportional to the re- 
sistance force acting on the body from the direction of the liquid. 

Presentation (3.6) means that (at least in the region of the trail) the main terms of 
the asymptotics for the velocity field in the problem of pulse-free flow are characterized 
by eighteen parameters, i.e., elements of tensors R and Q. In the axisymmetrical case, the 
number of parameters decreases to eight. Identification of elements for tensor Q, which 
are some functionals from solving problem (1.1)-(1.5), is one of the most important ques- 
tions in the group being considered. 

4. Finiteness of the Energy Integral. We note one of the paradoxical results connec- 
ted with the classical problem of flow for Navier-Stokes equations. In system (i.I) let 
g = 0 and in condition (1.2) w~ --e I (the latter means immobility and impenetrability for 
the boundary of the body). Then for any solution u, p of problem (1.1)-(1.4) satisfying 

condition (2.1), Slul2dx =oo (confirmation of a similar type with respect to energy of per- 

turbed movement in the problem of viscous flow was established for the first time in [I0]). 

It is intuitively clear that a self-propelled body cannot make such a considerable per- 
turbation in the stream. The proper accurate formulation is as follows. Let u , p be the 
solution of problem (1.1)-(1.4) satisfying additional conditions (1.5) and (2.1). Then 

y (4 1) W = - ~  lul~dx<co. 
Q 

As already noted, condition (2.1) entails the correctness of presentation (2.9) for 
any solution of problem (1.1)-(1.4). Additional condition (1.5) means that function u (x) it 
self satisfies inequality (2.10). The required proof of (4.1) will be shown if it is estab- 
lished that the function standing in the right-hand part of (2.10) is quadratically summable 
in region r e 1 with quite small e > 0. The latter for e < 1/2 is almost obvious: 

o o ~  2 ~  

S J" J' r-S+ze [ r ( l -  cosO)+ t]-'+aer2sinOdrdOdcp -- 
1 o 0 
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---- 2n t' r-2+'~8 | [ (z + t)-2+ 2~ dz dr < oo 
t~- 

(r, %, and ~ are spherical coordinates). Therefore, W < ~. 

The capacity for solution of the problem of pulse-free flow expressed by inequality 
(4.1) separate this solution from all possible solutions of problem (1.1)-(1.4) if func- 
tions w and g in its formulation are varied. This capacity may be used in order to study 
the question of existence of a solution for problem (1.1)-(1.5) if it is considered as an 
optimization problem. 

Let number N > 0 be so great that surface Z lies strictly within the sphere Z N : Ixl = 
N. We designate in terms of ~N a region included between surfaces Z and Z N in terms of u N 
and pN i.e., solution of system (i.i) in region ~N satisfying condition (1.2) and 

UN]2N = 0. (4.2) 

If there is fulfillment of relationship (1.4) and the regularity conditions in relation E, 
w, andg, listed at the beginning of Sec. 2, then problem (i.i), (1.2), (4.2) has at least 

I 
one classical solution. It is clear that for this solution the energy integral Wx =~2-X 

S !uNI dx is finite. 

n~ Now we direct N toward infinity. Family {u N} is compact in the distance function gener- 
ated by the Dirichlet integral with fixed w and g [3]. However, generally speaking, WN ~ ~ 
with N + ~. It is proposed to find a pair of functions w N and gN, which yield a minimum func- 
tional W N with a given finite N. If it is possible to provide limitedness for series WNwith 
N § ~ and to establish compactness in the appropriate distance value of family {w N, gN}, then 
limiting element w,g will determine the solution of problem (1.1)-(1.4) satisfying condition 
(4.1). Whence it is easy to conclude that this solution of u, p satisfied the self-propulsion 
condition (1.5). 

5. Turbulent Flow Regime. We study stationary turbulent flow around a self-propelled 
body. It appears that, in this case, it is possible to obtain some information about the 
behavior of velocity at a distance from the body on the basis of Sec. 3. 

We shall consider Eq. (i.i) as a Reynolds equation for average velocities and pressure 
for stationary turbulent flow for which we retain the previous notations u(x) and p(x). The 
density of external forces figuring in Eqs. (i.I) has the form 

g = --2 div H, 

where  H i s  t h e  t e n s o r  f o r  R e y n o l d s  s t r e s s e s  w i t h  e l e m e n t s  Nij  = ~ ' ,  u i '  i s  t h e  p u l s a t i o n  
component  o f  t h e  i - t h  component  o f  t h e  v e l o c i t y  v e c t o r ,  i ,  j = 1, 2, 3; a l i n e  above  means 
t h e  o p e r a t i o n  o f  a v e r a g i n g .  

As i s  w e l l  known, a t  a c o n s i d e r a b l e  d i s t a n c e  f rom a body t u r b u l e n c e  d e g e n e r a t e s .  T h e r e -  
f o r e ,  i t  i s  n a t u r a l  t o  assume t h a t  f u n c t i o n s  ~ i j  and t h e i r  d e r i v a t i v e s  d e c r e a s e  r a p i d l y  w i t h  
r § ~. In  [11 ,  P a r a .  XIV] on t h e  b a s i s  o f  t h e  w i d e s p r e a d  h y p o t h e s i s  a b o u t  s e l f - m o d e l i n g  
and a d d i t i o n a l  i d e a s ,  e x p r e s s i o n s  were  o b t a i n e d  f o r  l o n g i t u d i n a l  v e l o c i t y  and c h a r a c t e r i s t i c  
R e y n o l d s  s t r e s s  in  a x i s y m m e t r i c a l  t u r b u l e n t  f l o w  b e h i n d  a s e l f - p r o p e l l e d  body:  

-- H12 xT s/Sh z2 = �9 (5 i) 

Here x i and x 2 are axial and radial coordinates of a cylindrical system; u i is deviation 
of the dimensionless average axial component of velocity from unity. ~n (5.1) it is assumed 
that x i > O. Functions g and h decrease exponentially with ~ =x2/xll/ § ~. [Equation (5.1) 
has a limited field of applicability. On the one hand, x I > 0 should be sufficiently large 
that it would be possible to develop downwards through the flow a self-modeling movement 
regime, and, on the other hand, with very large values x I > 0 the turbulent nature of flow 
should vary in a laminary way. With large negative values of x I it should be generally as- 
sumed that nij = 0.] 

We assume that with r § ~ the inequality 

IHul ~< Cr-2+r + t)-2"z' ]V~T::I ~ Cr-5/2*e(s + 1)-2+8 ( 5 . 2 )  
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is fulfilled with e e (0, I) (i, j : I, 2, 3). Then, in order ~o solvethe unclosed syss (i.i) 
with conditions (1.2)-(1.4) when g = -2div N it is possible to obtain an integral presentation 
similar to (2.3) in which the second of the volumetric integrals is substituted by Nn(x) = 

--21H(y):vE(x-- y)dy. Existence of inequality (5.2) makes it possible to find a presenta- 

tion similar to (3.4) for function N n . Further reasoning is similar to that provided in 
Sec. 3. It is possible to formulate it as follows. 

Let elements ~iJ of the Reynolds stress tensor be satisfied by inequality (5.2) with 

r + =. We assume that the self-propulsion condition J[pun - 2u(u + ei).n -- 2 H . n ] d E  = 0 is 

fulfilled. Then for the average velocity vector u(x) asymptotic expression (3.6) is valid 
with r + ~ in which R and Q are constant tensors of the second rank. 

It is emphasized that we arrive at this conclusion without drawing on any hypotheses 
of a semi-empirical nature. On the other hand, the values of Eq. (3.6) for turbulent flow 
at a distance from a self-propelled body should not be exaggerated. Evidently the region 
of its applicability commences from those distances at which the term div ~ in order of value 
becomes less than ~u/~x I. 

The author is obliged to L. V. Ovsyannikov for his interest in the boundary problem 
for Navier-Stokes equations. The author expresses sincere thanks to L. V. Ovsyannikov for 
many years of benevolent attention to his work. 
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